
artdaq: An Event Filtering Framework
for Fermilab Experiments

K. Biery, C. Green, J. Kowalkowski, M. Paterno, and R. Rechenmacher

Abstract—Several current and proposed experiments at the
Fermi National Accelerator Laboratory have novel data acqui-
sition needs. These include (1) continuous digitization, using
commercial high-speed digitizers, of signals from the detectors,
(2) the transfer of all of the digitized waveform data to commodity
processors, (3) the filtering or compression of the waveform data,
or both, and (4) the writing of the resultant data to disk for later,
more complete, analysis.

To address these needs, members of the Accelerator and
Detector Simulation and Support Department within the Sci-
entific Computing Division at Fermilab have chosen to use
parallel processing technologies in the development of a generic
data acquisition toolkit, artdaq. The artdaq toolkit uses MPI
(Message Passing Interface) and art, an established common
event framework for Intensity Frontier experiments. In an artdaq
program, the digitized data are transferred into processors nodes
using commodity PCIe cards, event fragments are combined
into complete events using MPI, and filtering and compression
algorithms are run on the data using art. To test the toolkit, a
cluster of five 32-core high-performance computing nodes has
been assembled and connected with a QDR InfiniBand network.
Initial testing of data throughput shows event building rates in
excess of 1.5GB/s.

This paper describes the architecture and implementation of
the first phase of the artdaq toolkit and shows early performance
results with configurations that match upcoming experiments
such as Mu2e, NOνA, and DarkSide-50.

I. INTRODUCTION

THE artdaq project has been established to design and
develop a generic toolkit for the construction of efficient

and robust event filtering and analysis programs within data
acquisition systems for future experiments at Fermilab. These
experiments have fewer collaborators than Fermilab’s collider
experiments, and so cannot easily afford to develop as much
customized software as could the larger experiments of the
TeVatron era.

An important aim of the artdaq project is to allow the
sharing of data acquisition (DAQ) infrastructure between
experiments, helping them to work within the smaller budgets
available to them. We are able to help smaller experiments
with limited resources to concentrate their effort on the parts
of the system that are experiment-specific, and to relieve them
of the burden of supporting the parts of the code that can be
dealt with in a generic (i.e. non-experiment-specific) manner.

A second aim of artdaq is to allow use of commodity
computers, rather than special-purpose hardware such as Field-
Programmable Gate Arrays (FPGAs), as close to the data

Manuscript received June 11, 2012.
Scientific Computing Division, Fermi National Accelerator Laboratory,

Batavia, IL, USA. This work was supported in part by the U.S. Department
of Energy, Office of Science, HEP, Scientific Computing.

source as possible. This makes programming easier, because
many more physicists know how to program general-purpose
computers than know how to program special-purpose hardware.
Since modern commodity computers have many cores—and in
the near future, possible hardware accelerators such as General-
Purpose Graphic Programming Units (GPGPUs)—artdaq is
designed to take advantage of multiple cores, and to make
the development of modular algorithm convenient, some of
which might be implemented on GPGPUs. Additionally, we
aim to take advantage of the high throughput of modern
machines, using high-performance networks, hardware buses,
and interconnects.

In many of the experiments with which the authors have
worked, the development of online and offline event1-processing
code has proceeded separately, by communities who interact
and exchange code with insufficient frequency. The result is
that the integration of the online and offline codes has been a
time-consuming challenge. To alleviate this problem artdaq
makes use of the art [1] event-processing framework, which is
also used as the offline event-processing framework for many of
the future Fermilab experiments. Experiments who use artdaq
would thus gain the benefit of a larger community of developers
for the online system (the offline system is typically understood
by more collaborators). Additionally, this means much of the
code used in online triggers system can be verified and profiled
for performance improvements in the offline environment.

II. PROBLEMS ADDRESSED

In this section, we describe three of the problems that
artdaq addresses. They are general in nature; although not all
apply to each experiment, most experiments encounter one or
more of them. In the subsequent section, we describe some
concrete use cases, for specific experiments, that have guided
the development of artdaq.

A. Trigger Algorithm Execution

Many experiments require the ability to run algorithms, some
of which may be complex, to select the subset of events to be
written. In order to fine-tune the event selection, experiments
want the ability to modify selection thresholds and to replace
algorithms, without rebuilding programs. Additionally, many
experiments want the ability to run multiple trigger algorithms
in the same program, on the same event stream.

Because of the degree of sophistication of trigger algorithms,
experiments want to enable all physicists interested in working

1An event, in our terminology, is a collection of data associated with one
time window, and is the smallest unit of data to be processed.



on trigger algorithm development and testing to do so. Thus
experiments want to be able to run the trigger algorithms in the
offline framework, as well as in the online system. This allows
for easier development, as well as study of the algorithms within
the simulation, without the concern inherent in the comparison
of two different implementations of (what is intended to be) the
same algorithm. Seamlessly supporting multiple environments
also permits extensive algorithm debugging and performance
studies using typically more readily-available offline computing
resources.

B. Event Building

The detectors built by most experiments are read out through
multiple, often heterogeneous, DAQ front-ends. Each front-
end is responsible for reading a fixed portion of the detector
hardware. One of the important tasks to be undertaken by the
DAQ system is the assembly of all the readouts corresponding
to a single event. We call this assembly process event building.
Event building often requires the coordinated work of several
computing nodes.

The throughput rates of the hardware and software that
make up the event building system directly limit the amount
of data that an experiment can process in a given period of
time. Thus it is imperative to communicate data efficiently and
reliably from data collection nodes to wherever the triggering
algorithms (or other data processing algorithms, e.g., data
compression) will be run. This includes systems that have
no data filtering in front-end hardware and event processing
times that vary widely. Depending on the computing resources
available to an experiment, it may be beneficial to use the
same computing nodes for both tasks. In order to be able to
allow the necessary testing to determine the optimal event
building system configuration, experiments want to be able to
reconfigure the system (adding more processing capacity, or
reacting to loss of hardware) without reprogramming.

C. Single Node Processing Capacity

Modern experiments need to make use of modern computing
hardware, which means taking advantage of multicore plat-
forms, and, when useful, accelerators such as GPGPUs. In
an era of tight budgets, it is critical to take full advantage of
the most affordable commodity computing resources available.
Increasingly, this means taking advantage of both distributed
and shared-memory parallel computing technologies. However,
it is not reasonable to expect that all contributors to online
software development will become experts in parallel program-
ming techniques. In artdaq, we are working to develop tools
that simplify the development of software that is able to take
advantage of the parallelism inherent in the event-building and
triggering tasks, and which utilizes multicore hardware and
high-throughput networks to their greatest advantage.

III. GUIDING USE CASES

A. The NOνA Prototype Data Driven Trigger

The NOνA [2] experiment at Fermilab currently features
a free-running continuous readout system without dead time,

which collects and buffers time-continuous data from over
350 thousand readout channels. The raw data must be searched
to correlate it with beam spill events from the NuMI [3] beam
facility.

The NOνA event-building system is designed to continuously
process data at full sampling rate from the NOνA detec-
tors, using commodity networking and computing equipment.
For the far detector, custom designed upstream hardware
delivers fragments of data in 5ms time slices to more than
180 multicore commodity buffering nodes using standard
gigabit Ethernet switches. The fragments are assembled into full
time-synchronized windows, which are then written to shared-
memory segments. The time windows are indexed to allow for
efficient search and delivery to downstream applications upon
receipt of positive trigger broadcasts. The system can sustain a
raw data input rate of greater than 2GB/s and buffer in excess
of 20 seconds’ worth of data.

NOνA is investigating the design and development of a
Data Driven Trigger (DDT). In the prototype DDT, the shared-
memory segments are ingested by a process that reads all
raw time slices at full rate, and feeds them into art, the
event-processing framework also used by the NOνA offline
software. This framework runs analysis modules that examine
each slice in real-time to identify event topologies of interest.
The analysis results then are fed back into the experiment’s
triggering systems to form data-driven decisions.

The first physics algorithm to be completed was a track
finding algorithm based on a serial version of the Hough
transform algorithm. Because the physics algorithms that are
part of the prototype NOνA DDT are implemented as art
modules, the algorithms can be developed, tested, and subject
to performance profiling and tuning in the offline environment,
and then used in the online environment. New algorithms can
be added to the DDT by changing a configuration file, with
no need to recompile the DDT program.

Using a few of the components of artdaq in early studies
for NOνA, we have been able to read real data out of the
NOνA NDOS DAQ via the existing shared memory interface
and queue those data for processing by an instance of art.
Figure 1 shows the distribution of time taken by the trigger
algorithm to process each event. This algorithm is amenable
to parallelization and certain optimizations, which will be the
subject of further developments. Even without these improve-
ments however, the mean time of 98ms gives confidence that the
problem is tractable using commodity hardware. Figure 2 shows
that the framework and data movement processing time is small
compared to the trigger algorithm run time. The current near
detector has approximately half the channels of the finished near
detector, meaning that with no improvement in the algorithm we
would extrapolate to an average processing time of order 400ms
per event compared to a time budget of 55ms (as constrained
by the size of the round-robin buffer in shared memory and the
DAQ rate). If necessary however, this budget could be made
larger by a factor of approximately four by using inter-node
communications to process each of the four shared memory
buffers on a separate node. NOνA’s far detector is expected to
have approximately 20–25 times the hit channels per event as
the near detector but with a budget of up to 1s to process each



Time (ms)

C
ou

nt

0
50

100
150
200
250
300

100 150

Mean = 98.1 ms.
sd = 14.4 ms.

Fig. 1: The distribution of trigger algorithm processing times for a sample
of events from the (incomplete) NOνA NDOS.

Fraction

C
ou

nt

0

50

100

150

200

250

0.015 0.020 0.025 0.030 0.035

Fig. 2: Distribution of the art framework’s data processing overhead, shown
as a fraction of the total processing time for each event.

event. Similar multi-node and parallelization options are also
available in this case though, and are being actively pursued.

B. Fast Compression and High Data Rate at DarkSide-50

For the proposed direct dark matter search experiment
DarkSide-50 [4], we used artdaq to create a prototype event
builder and processing system that would require only one
multicore commodity computing node to keep up with their
front-end data rate. The current plan for this experiment is to
provide five front-end digitizer boards, each containing eight
channels for a total capacity of 40 channels, of which 38 are
used. Each board will aggregate up to eight channels onto one
fiber optic link that will supply data to the processing node
through PCIe. The digitizers will operate at 250MHz. Events
will consist of one 300µs sampling interval across all channels
and will occur at a rate of 50Hz. To accommodate this rate, the
computing system is required to handle a continuous average
data rate of 300MB/s. Due to practical considerations, such
as cost of permanent storage, the output stream is required to

not exceed 30MB/s. Figure 3 shows the organization of the
prototype DarkSide-50 data acquisition system. We have started
a number of studies to determine if a low-cost commodity
computing could handle the requirements of DarkSide-50. The
first two studies answer the following preliminary questions:
(1) at what rate can a single node ingest data from the digitizers
and perform the event-building task, and (2) at what rate can
we run a compression algorithm on the data stream and what
compression ratio can be achieved. Later studies will explore
the question of what it will take in terms of computing resources
and algorithms to achieve the 10-fold data reduction from input
to output. We have established a system necessary to explore
the first two questions and initial results that answer them. An
interesting aspect of these tests are that what is delivered from
the front-ends are all the samples in each 300µs window. All the
algorithmic work is carried out within a standard commodity
node.

Because front-end hardware does not yet exist for this
experiment, we have provided components that emulate missing
functions. To emulate the data link layer through the PCIe bus,
we use an 8x 40Gb/s QDR InfiniBand (IB) NIC connected to
an 18 port switch. For the processing system, we use a 1U
4xAMD6128 (32 total cores) system with 64GB of RAM. Using
actual digitizer test stand data, we created a data generation
software library capable of generating event fragments, each
representing the data of a board with eight channels. The
system is configured to use three nodes to emulate the data
generation of each of the five front-ends (for a total of 40
channels of data). On the single processing node is configured
five fragment receiving processes, each tied directly to one
of the data generators through the IB network. In order to
fully utilize the available 32 cores, artdaq is configured with
five event processors, each of which constructs and processes
full events from the fragments delivered by the receivers.
This configuration yields five parallel full-event streams for
algorithms to operate on.

We chose to use Huffman coding in our first compression
algorithm, partly due to its simplicity, speed, and ability to
achieve good results. Because the signal and noise can be
measured and are consistent through a run, and also because
the set of symbols is small, we chose to pre-calculate the
tables to be used by the compression algorithm. This algorithm
was trivially parallelized using OpenMP [5]. In the initial
implementation, each board (or event fragment) is assigned to
one thread, effectively allowing for five-way parallelism for the
processing of a single event. With five available event streams,
each performing five-way parallelism, we are able to utilize
25 of the 32 cores available on the machine. The algorithm
achieves an average compression ratio of 4.87:1; figure 4 shows
the spread of compression ratios achieved for the sample of
events. With the configuration described above, we are able
to operate the system at an average of 246 events/s. This rate
includes both the event building overhead and the compression
algorithm processing times. Figure 5 shows the distribution of
times taken to process each event (n.b. five event streams are
running in parallel on the same node). Coincidentally, this is
approximately 5 times faster than the required 50Hz rate. This
rate also corresponds to a data rate of 1.47GB/s.



D
at

a 
lin

k 
ca

rd

Board

Digitizer

Board

Digitizer

Board

Digitizer

Board

Digitizer

Board

Digitizer

Multicore node

Fragment 
receiver

PC
Ie

 b
us

Fragment 
receiver

Fragment 
receiver

Fragment 
receiver

Fragment 
receiver

Event 
builder

Event 
builder

Event 
builder

Event 
builder

Event 
builder

art framework 
(compression)

art framework 
(compression)

art framework 
(compression)

art framework 
(compression)

art framework 
(compression)

Fig. 3: The major components of the prototype DarkSide-50 event building system. Solid lines indicate inter-process communication, done mostly through
MPI. Dotted lines indicate communication between different threads in the same process.

Compression ratio

C
ou

nt

0

200

400

600

800

1000

1200

3.0 3.5 4.0 4.5 5.0

Fig. 4: Distribution of compression ratios for each DarkSide-50 event.

C. Mu2e Multi-node Event Building

We have begun studying the feasibility of developing a
full-rate DAQ (one which does little or no hardware filtering)
event filtering system for the Mu2e experiment [6]. Providing
a software system that will perform event filtering at full
rate will currently require and aggregate throughput of about
30GB/s from approximately 275 front-end detector sources.
The filtering software will need to reduce the input data stream
to about 30MB/s. Assuming that digitized waveform data
can be made available on a PCIe bus within a commodity
computing node from the front-end hardware, the questions we
are exploring are: how many nodes will it take to (1) handle
this input data rate and (2) perform the event filtering functions.
We have initial results from the first of these questions. Because

Event processing time (ms)

C
ou

nt

0

200

400

600

20 22 24 26

Fig. 5: Distribution of time taken to process and compress each DarkSide-50
event.

of the architectural similarity with DarkSide-50 and similar
high data-rate requirement, we have been able to utilize the
existing five node (each with 32 cores) IB-connected system
for these tests.

The configuration of the event builder and data generators is
somewhat different than the DarkSide-50 configuration. Here
we use the IB network entirely for the event building and
drive it using our MPI-based components. We also assume that
each of the five nodes is connected to front-end hardware and
reads out a portion of the detector. Each node contains (1) a
data generator, (2) a data reader (detector fragment receiver
or reader), and (3) an event builder that forms full events and
processed them. This means that each node effectively sees



1/5 of the detector on readout and also 1/5 of the full events
for processing and analysis. If the system scaled perfectly, we
would expect a rate that is five times that of one machine. Partly
because of the many-to-one function that being performed for
event building, this is not possible. With this 5×5 configuration,
the measured average aggregate throughput is 3.4GB/s (or
700MB/s per node). Note that on this network, an individual
node is able to send to another at a rate greater than 1.5GB/s.
Studies have just begun to understand where the performance
decrease occurs as nodes are added. One area we will explore
is the MPI implementation; there are more efficient versions of
MPI available than that which we are currently using. There
are many other areas to optimize, including tuning MPI for
better memory-to-memory copying and tuning the IB network
to better handle our traffic pattern. This early result is already
positive. If additional scale-up tests indicate that similar rates
can be maintained, it shows that it is feasible to construct a
30GB/s data processing system at a reasonable cost.

IV. THE ARCHITECTURE OF ARTDAQ

artdaq contains three major subsystems:
• components for routing data between processes, possibly

on different machines, and between different threads on
the same machine, and for assembling complete events
from these data;

• components that house the data being routed, which
experiments use to describe their data;

• the art event processing framework.
Since artdaq is a toolkit for constructing event-building and
filtering programs, it does not contain any complete DAQ
applications; these would be built by each experiment to that
experiment’s exact requirements and preferences. The major
components of artdaq are shown in figure 6. All user-visible

Experiment-specific 
DAQ applications

Event-building and 
routing components

art event-processing 
framework

Experiment-supplied 
data products

Experiment-supplied 
filtering and 

reconstruction modules

Data components

Generic data 
components

Experiment-supplied 
raw data formats

Fig. 6: Major elements of the artdaq architecture. The arrows indicate
dependencies, e.g. experiment-supplied raw data formats depend upon the
artdaq generic data components. The components in blue are those delivered
as part of artdaq. The remaining components are supplied by the experiments
that use artdaq.

classes in artdaq are defined in the artdaq namespace. For
brevity, in this paper we provide class names without the
namespace specification.

A. Data Model Components

The data model components of artdaq are written to require
the least possible copying of data. To this end, we have made
extensive use of some of the new features of the 2011 C++
Standard [7].

The primary data components are the classes Fragment and
RawEvent. An instance of class Fragment represents a well-
defined portion of the data from one event (likely that read by
one front-end unit) as defined by the experiment. The interface
of Fragment is sufficient to provide the information necessary
for routing, and the implementation organizes the data for
optimal throughput of the routing systems. Each Fragment
is identified by a two-part identifier: an SequenceID, that
denotes the event to which the Fragment belongs, and a
FragmentID, which identifies which detector component
(or components) are represented by the Fragment. Each
experiment must choose what information from its own data is
to be used to construct these two identifiers; for the experiments
with which we have worked thus far, the identification has
been trivial. Fragments also contain a type identifier, which
is used to identify what type of data are being carried by the
fragment. This allows experiments the flexibility of having
different types of data (e.g., detector data fragments, trigger
blocks), while assuring that all can be handled with the same
efficiency by the data-routing and event-building system.

The physical organization of the data in a Fragment
consists of a std::vector of 64-bit unsigned integers.
Because we are using the features of C++ 2011, this allows
us to pass Fragment objects between software components
without making a copy of the contained data. This allows us
to keep the code simple to understand and to use correctly,
risking neither memory leaks nor lack of exception safety. We
deal with Fragment objects, not addresses in memory, but
the resulting code is as efficient as if we worked with the
pointers to the data directly.

The logical organization of the data in a Fragment consists
of two parts: a header, which contains the routing information
described above, and a payload, which contains the experiment-
specific data carried by the Fragment. The first two elements
of the physical vector contained in the Fragment contain
the bit-packed header information; the interface of Fragment
provides access to the data in a convenient and type-safe manner.
The experiment-specific code that works with Fragments
does so by overlaying a defined structure onto the payload
part of the Fragment, as described in section IV-D. This
system allows for payloads of arbitrarily large size; there are
no compile-time limits set on the sizes of the experiment data.
Fragment objects are persistable through the art frame-

work’s persistency mechanism. This means that any experiment
that uses Fragment in the definition of its raw data classes
automatically obtains a means to write those data to the same
type of file that is read by the experiment’s offline system.
In addition to providing the means of persistence for detector
data, this also means that simulations can create data files
in the same format as the experiment’s raw data; thus the
output of such a simulation can easily be fed through the data
processing algorithms that will be applied to the detector data,



to help verify correct behavior of those algorithms, and for
performance tuning.

The event-building process collects Fragments to build
RawEvents, making use of the features of C++ 2011 to avoid
copying the underlying data. The RawEvent can contain an
arbitrary number of Fragments; again, there is no compile-
time limit set. Due to the flexibility of the Fragment, the
RawEvent can contain many different types of experiment-
specified detector data. The event-building code that deals with
RawEvents and Fragments does not need to be modified
if new experiment-specific data types are added to an existing
system.

B. Event Building Components

artdaq makes use of the Message Passing Interface (MPI) [8]
to create a multi-process, potentially distributed, event-building
program. The use of MPI allows us to take advantage of high-
performance network drivers written for the supercomputing
community. We also obtain the flexibility of being able to
move different computational tasks to different nodes with just
a change in our configuration scripts, and with no need to
recompile the application. This can allow a running experiment
great flexibility in responding to failure of hardware. It
also makes measuring the performance of different program
configurations a relatively simple task; one needs only to change
a configuration file and re-run the test program to observe the
effectiveness of different process layouts.

An artdaq event-building and filtering program contains
three processing layers.

• The fragment receiver layer receives data from the
experiment’s front-ends (using whatever communication
mechanism the experiment chooses), and is responsible
for sending the data to the correct event builder, through
MPI.

• The event builder layer receives data from the fragment
receivers, collating them into complete events. Complete
events are then send to another thread in the same process
for event processing.

• The event processing layer runs the art event-processing
framework, which performs the necessary tasks (e.g.,
event filtering, data compression). The data are optionally
written to persistent storage by art.

An artdaq event building program is configured at run-time
to contain a number N of fragment receiver processes, and a
number M of event builder processes; there is no requirement
that N = M . Each fragment receiver receives a stream of
Fragments from the same detector component(s), and thus
with the same FragmentID, and routes each Fragment to
the event builder process responsible for handling the event
to which that Fragment belongs, based on a round-robin
algorithm. We provide the class SHandles to encapsulate
the coordination of multiple MPI buffers and to automatically
record some performance metrics.

The event builder processes receive the Fragments; we
have provided a class RHandles to manage multiple MPI
buffers used for reading and to record additional performance
metrics. We have taken care that once a Fragment has

been read from the MPI buffer, no additional copying of the
underlying data is ever done, regardless of the number of times
control of the Fragment is passed between different functions
and even between different threads of the process.

The most important class in the event builder processes is
EventStore, which is responsible for managing the thread
that runs the art event processing framework, for accumulating
complete events, and for sending complete events to the thread
that runs art. The EventStore is configured at run-time
to know the number of Fragments comprising a complete
event. Fragments making up a particular event may come
out of order, and some Fragments for a later event may
show up in the event building layer before all the Fragments
of an earlier event. The event builder layer aggregates the
Fragments it receives into RawEvents. When it determines
that the receipt of a Fragment has completed a specific event,
the event builder layer moves that RawEvent from its internal
cache of incomplete events and puts it onto a concurrent queue,
shared with another thread in the same process, which is
responsible for running the art event-processing framework.
Separate threads of execution are used so that the thread that is
building events can proceed at full pace even if the occasional
event takes a longer-than-average time to process in the thread
that is running art.

An orderly program shutdown is initiated when each detector
component has sent an end-of-data Fragment. Upon receipt
of an end-of-data Fragment, each fragment receiver process
sends an end-of-data Fragment to each event builder process.
When an event builder process has seen as many end-of-data
fragments as it expects, it puts an end-of-data marker onto the
concurrent queue, to communicate the end-of-data status to art,
and then awaits the termination of the thread running art. That
thread terminates when the art has completed processing any
events buffered up in the queue, ending with the end-of-data
marker that lets art know no more events are coming. The
current code is in prototype status, and so we have not yet
implemented the other control flow features necessary for a
fully functional DAQ.

The event building system keeps monitoring statistics at a
number of critical points. The user can obtain some important
performance results without modifying code. We note this is
prototype code, and we are still working on the optimal set of
points to monitor.

C. The art Framework

The art framework is used to execute experiment-supplied
algorithms for triggering, data compression, reconstruction, and
writing of data files. It provides configuration ability through
use of the Fermilab Hierarchical Configuration Language
(FHiCL) [9]. The framework can run an arbitrary collection
of algorithms, decided at configuration time, not at program
compilation or linking time. Experiment-supplied algorithms
are implemented by writing art modules, which are classes
that implement one of a handful of interfaces specified by
art. Each module is built into separate dynamically loaded
library. Based on the contents of the FHiCL configuration file,
art loads the libraries necessary to run the named modules.



Algorithms can obtain read-only access to data products in the
event, and add new data products of their own construction.
art also supplies the scheduling features that allow different
combinations of algorithms to be run on different events, based
on pass-or-fail decisions made by experiment-supplied filter
modules, all without rebuilding the application.

Provenance information is automatically stored for all data
products. FHiCL allows experiments to provide “standard”
configurations for all modules, and for a user to partly
or entirely override a standard configuration on a case-by-
case basis. The automatic provenance tracking records the
parameters that were actually used to configure each module
(regardless of whether they were the experiment defaults or
the user-level overrides), and associates those parameters with
the data product or products made by each module.

The framework has monitoring points around the invocation
of each module, so event-by-event timing results can be
obtained for every module. Additionally, simple memory
usage analysis can also be performed, helping to identify any
algorithms with uncontrolled memory usage.

art also provides a set of run-time-configurable policies
for reacting to exceptions thrown by modules, and exception
classes for experiments to use in their own code. The data in
the exception communicates the kind of error that has been
encountered (e.g., observation of data corruption). The policy
determines how the framework will respond to that kind of
error. Among the choices are skipping the processing of the
module that encountered the error, skipping the processing
of that event entirely, and gracefully shutting down the entire
program.

D. What The Experiment Provides

The artdaq toolkit, and the art framework that it relies upon,
provide the generic, i.e., experiment-neutral, parts from which
an experiment can construct an event building and filtering
system. Individual experiments make use of the provided
infrastructure in several different ways.

At the highest level, individual experiments using artdaq
must still write their own experiment-specific DAQ applications:
artdaq is a prototype for a toolkit, not a collection of complete
applications. The needs of experiments are sufficiently diverse
that it is unfeasible for us to deliver complete applications to
the experiments. Instead, our groups work with the experiments
to help them produce software matching their specific needs.

Experiments must, of course, define the format of their own
raw data objects. In order for the data products they define to
be consistent with artdaq, it is required that the data of the
individual product be contained in a contiguous series of bytes;
this is because the data of the Fragment is a continuous
sequence of 64-bit unsigned integers (contained in a vector).
It is then straightforward (and strongly recommended) to write
utility classes to handle the technicalities of reading and writing
the data structure, and applying the data product overlay to the
Fragment. This localizes the low-level bit manipulations to
a limited number of classes, rather than having it be visible
in many places in the code that uses these data. As a result,
verification and modification of the code is simpler.

As part of their use of the art framework (both for offline
and online purposes), experiments are responsible for defining
their own data types to describe reconstruction results. These
data products must conform to the restrictions imposed by
the persistency system used by art. There is no required class
inheritance involved, and experiments do not need to implement
the functions that write the data to the art data storage format.
For data products that are noted as non-persistable, these
requirements are relaxed.

Also as part of their use of the art framework, experiments
are responsible for defining their own reconstruction and
filtering modules. In the terminology of art, reconstruction
includes all data transformation: unpacking or decompression
of data, translating from “electronics coordinates” to “physics
coordinates”, applying calibrations, as well as what is typically
thought of as reconstruction, e.g. track reconstruction. The
framework provides a few base classes from which experiment-
produced modules must inherit; this allows the modules to
be dynamically loaded and invoked by framework without
requiring recompilation of the framework.

V. FUTURE PLANS

Short-term plans for the advancement of this work include:

• investigation of possible improvements in parallelization
of NOνA’s trigger algorithm, and use of inter-node
communication;

• for DarkSide-50, further parallelization of and possibly
other improvements to the compression algorithm, and if
necessary, data reduction by removal of “uninteresting”
regions to accommodate storage constraints;

• further study of the scaling performance for our Mu2e
simulation, including investigation of several alternative
MPI implementations.

In the medium to long term, we are continuing our work to
introduce schedule-level parallelism (the ability to analyze
multiple events at the same time in one process) to art.
We are also planning to provide the facility to run GPGPU-
enabled algorithms. Module-level parallelism is also of interest
to the NOνA DDT use case. For DarkSide-50, we plan to
develop a FPGA/PCIe based data generator for experimental
simulation at greater data rates. We are also starting to work
with µBooNE and the muon g-2 experiments to apply the
artdaq paradigm to their particular needs and situations. Given
sufficient interest and available effort, the artdaq prototype
package will transition into a complete, tested and polished
toolkit for use by experiments.

VI. SUMMARY

The initial prototype event-builders written using the proto-
type artdaq have been able to achieve adequate (in the case of
DarkSide-50, much more than adequate) data throughput in a
very short time, with limited development resources and with
very modest demands placed upon the experiments’ developer
resources, using a modest amount of commodity computing
hardware.



Using tools (MPI) commonly used in the HPC community,
we have been able to quickly move forward to building fully-
configurable distributed multi-process programs, without having
to write any low-level code.

We have demonstrated portability between offline and online
software for testing and ease of debugging, and have established
an environment in which we can carry on with our R&D tasks.
We have already generated some enthusiasm in those in our
local community who have been surprised by the speed of
development and the resulting performance of the system.

REFERENCES

[1] The home page for the art framework is https://cdcvs.fnal.gov/redmine/
projects/art.

[2] “NOvA Neutrino Experiment”, available at http://www-nova.fnal.gov.
[3] “MINOS Experiment and NuMI Beam Home Page”, available at http:

//www-numi.fnal.gov.
[4] The DarkSide-50 Experiment Proposal is available at http://www.fnal.gov/

directorate/program planning/Nov2009PACPublic/DarkSideProposal.pdf.
[5] OpenMP Application Program Interface, http://www.openmp.org/mp-

documents/OpenMP3.1.pdf.
[6] “Mu2e Experiment”, available at http://mu2e.fnal.gov.
[7] The C++ programming language is specified by the ISO standard ISO/IEC

14882:2011 Information Technology–Programming Languages–C++.
[8] “Message Passing Interface Forum”, http://www.mpi-forum.org.
[9] The home page for FHiCL is https://cdcvs.fnal.gov/redmine/projects/fhicl.

https://cdcvs.fnal.gov/redmine/projects/art
https://cdcvs.fnal.gov/redmine/projects/art
http://www-nova.fnal.gov
http://www-numi.fnal.gov
http://www-numi.fnal.gov
http://www.fnal.gov/directorate/program_planning/Nov2009PACPublic/DarkSideProposal.pdf
http://www.fnal.gov/directorate/program_planning/Nov2009PACPublic/DarkSideProposal.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://mu2e.fnal.gov
http://www.mpi-forum.org
https://cdcvs.fnal.gov/redmine/projects/fhicl

